EPD

Environmental product declaration for Solid Polycarbonate sheets In accordance with EN 15804+A2 and ISO 14025

Issue date: DD.MM.2022 Valid until: DD.MM.2027

Owner of Declaration:

European Polycarbonate Sheet Extruders Kortenberglaan 71 1000 Brussel BELGIUM

Tamir Horesh VP Marketing Palram 14.12.2022

Declared product(s):
Solid Polycarbonate sheets
Functional Unit:
1 kg of Solid Polycarbonate Sheets
Declared LCA stages with options:
A1-A3, A4, C1-C4, D
PCR (Product Category Rule):
EN15804:2012+A2:2019
Year of Study:
2022
Validity:
This EPD is valid for 5 years from the date of publication.
Verification:
□ ☑ Internal External
Third party verification conform to EN15804+A2
Signature of the verifier
Bernd Brandt

Manufacturing site:

The EPD is declared for Multiple manufacturers

The EPD has been prepared by:

Arthur De Jaegher arthur@enperas.com arthur@enperas.com

Varun Gowda Palahalli Ramesh varun@enperas.com

Hannah Van Hees

Mihaela Thuring <u>mihaela.thuring@vito.be</u> +32 14 33 58 97

Life cycle stages and modules (MND = module not declared)

bernd@brandtconsulting.eu

Pro	Product stage Construction installation stage							Use stage	:	End of life stage					Beyond the system boundaries		
Raw materials	Transport	Manufacturing	Transport	Construction installation stage	$ m U_{Se}$	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal		Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	В2	В3	B4	В5	В6	В7	C1	C2	СЗ	C4		D
×	×	×	×	MND	MND	MND	MND	MND	MND	MND	MND	X	×	×	×		×

Product Description

Product name

Solid polycarbonate sheet

Product description and intended use

Solid polycarbonate sheets are unique engineering thermoplastics that combine a high level of mechanical, optical and thermal properties, which can be used for a wide range of glazing applications.

Description of the production process and technology

Sheets are formed by extrusion. Polycarbonate powder or pellets are heated to a molten state and pushed through a die and over calendering rolls of the desired cross section and then transported over rollers to cool down in a continuous process.

Product Composition and content

The product does not contain materials listed in the "Candidate list of Substances of Very High Concern for authorization" in a concentration over 0.1% (w/w).

Table 1 Composition of the product in percentages

Components	Composition / content /	Quantity
	ingredients	(range)
Product	Polycarbonate granulates	80 - 90%
	Regrinded polycarbonate	10 – 15 %
	granulates	
	UV-granulates	1 – 1,5 %
	Pigments (white, grey,	0.02 - 1.1%
	brown/bronze, blue, violet,	
	red)	

Technical data / Physical Characteristics

Table 1 Technical properties of the product

Technical property	Standard	Value/unit	Comment
Reaction to fire	EN 13501-1	B-s1, d0	Test according EN 13823
Dimensional tolerances	EN 16240	Pass/Fail	
Light transmittance (τ _v)	EN 14500	%	
Linear thermal expansion	ISO 11359-2	65.10 ⁻⁶ K ⁻¹	Coefficient
Durability	EN 16240	ΔA clear, ΔD coloured	Test according to EN ISO 4892-2
Thermal transmittance (U value)	EN ISO 6946	3,5 – 5,8 W/m ² K	Depending on thickness

DATE OF LCA STUDY

July 2022

SOFTWARE

For the calculation of the LCA results, the software program SimaPro 9.1.1.1 (PRé Consultants, 2021) and Quadrant tool has been used.

REFERENCE FLOW / DECLARED UNIT

Functional unit is the production of 1 kg of a "solid polycarbonate sheet". Solid sheets are typically available in thicknesses between 2 – 15 mm

Table 3 Conversion factors for solid polycarbonate sheets

SOLID PC sheet	Value	Unit
Functional unit	1	kg
Gross weight per square meter	1,2	kg/m²/mm
Conversion factor to 1 m ²		
2 mm	0,417	-
3 mm	0,278	-
4 mm	0,208	-
5 mm	0,167	-
6 mm	0,139	-
8 mm	0,104	-
10 mm	0,083	-
12 mm	0,069	-
15 mm	0,056	-

INFORMATION ON ALLOCATION

At the manufacturing sites of the EPSE members, different types of sheets are produced. In some cases, solid polycarbonate sheets are produced only on certain production lines, with no co-products being produced as part of the process. In some cases, only facility-level data were available for electricity use, the use of natural gas, etc. The facility-level data have been allocated to the analyzed product using their respective annual production volume (physical relationship), therefore volume allocation is applied.

INFORMATION ON CUT OFF

All major raw materials and all the essential energy is included. Packaging of one of the pigments used was not included, as data was not available. The amount was very small, negligible, and considered under the cut-off threshold.

REFERENCE SERVICE LIFE

Average reference service life is of 30 years

DESCRIPTION OF GEOGRAPHICAL REPRESENTATIVITY

Europe

PRODUCTION SITES

Multiple manufacturers, multiple sites

INFORMATION ON CARBON OFFSETTING

Carbon offsetting is not allowed in the EN 15804:2012+A2:2019 and hence not considered in the calculations

INFORMATION ON CARBONATION OF CEMENTITIOUS MATERIALS

Nothing to declare

INFORMATION ON EXCLUDED PROCESSES

Environmental impacts caused by the personnel of the production plants are not included in the LCA, e.g., waste from the cafeteria and sanitary installations, accidental pollution caused by human mistakes, or environmental effects caused by commuter traffic. Heating or cooling of the plants in order to ensure a comfortable indoor climate for the personnel is also neglected.

Specificity

The life cycle inventory for this study is performed by EPSE and ENPERAS/VITO according to the ISO 14040 and ISO 14044 (data inventory) standards (ISO, 2006).

Specific data have been collected for the processes under operational control of EPSE companies. Generic data have been used for the processes EPSE cannot influence.

Period of data collection

Data was collected for the year 2019. The final amounts are based on the weighted averages of the 7 data providers.

Information on data collection

Company-specific data concern the data about the production of the polycarbonate sheets. All required data about the production process have been delivered to Enperas/VITO by EPSE. Enperas/VITO uses publicly available generic data for all background processes such as the production of electricity, transportation by means of a specific truck, etc. The main LCI source used in this LCA study is the Ecoinvent 3.6 database (June 2019).

Database used for background data

The main LCI source used in this study is the Ecoinvent 3.6 database (Wernet et al., 2016).

Energy mix

The European electricity mix (consumption mix + import) has been used to model electricity use in life cycle stages A3, C4 and D. The used record is the Ecoinvent record 'Electricity, medium voltage {Europe without Switzerland} | market group for | Cut-off, U and 'Electricity, low voltage {Europe without Switzerland}| market group for | Cut-off, U' (Wernet et al., 2016).

Details of the underlying scenarios used to calculate the impacts

A1 – Raw material supply

This module considers the extraction and processing of all raw materials and energy which occur upstream to the studied manufacturing process.

A2 – Transport to the manufacturer

The raw materials are transported to the manufacturing site. Primary data was collected for each raw material from each manufacturer

A3 – Manufacturing

This module considers the production process.

A4 - Transport to the building site

Transport type	Unit	Comment
Truck 3,5 - 7,5t,	km	Transportation from
Euro5		merchant to installation
Truck 7,5 - 16t,	km	Transportation from
Euro5		merchant to installation
Truck 16 - 32t,	km	Transportation from factory
Euro5		to merchant
Truck > 32t, Euro5	km	Transportation from factory
		to merchant
Transoceanic freight	km	Transportation from factory
ship		to merchant

A5 - Installation

The scope of the study is established as cradle-to-gate with options, where A4 is included but A5 is not. For the installation there are multiple build-up alternatives, depending on the application. Accounting for all of them is not possible within the framework of this study. However, the disposal of waste generated from the packaging of the final product is normally allocated to the installation phase, A5.

B – Use stage (excluding potential savings)

B1, B2, B3, B4, B5, B6: Modules are not declared. Since no maintenance, replacement or operational energy use are necessary during the Reference Service Life (RSL) of the product (30 years), no environmental impacts occur during these modules.

C - End of life

The polycarbonate solid sheets are 39,0% landfilled, 32,2% incinerated and 28,8% recycled. The EU scenarios for the transport of waste are:

The EU scenarios for the transport of waste are:

- 50 km with a 16–32-ton EURO 5 lorry from demolition site to sorting plant/crusher/collection point and landfilling.
- 150 km with a 16-32ton EURO 5 lorry from sorting plant and incineration/energy recovery.
- 800 km with a 16-32ton EURO 5 lorry from sorting plant and recycling.

C1: Dismantling

It is assumed that the dismantling of the PC sheets will only cover the un-screwing the PC sheet from whatever build-up it is installed. A generic assumption is that around 8 screws are necessary for 1 m² PC sheet and 1.11 screws are needed for the FU of 1 kg of solid PC sheet, where an amount of 0,0216 kWh per screw is used. The dataset used to model the impacts is "Electricity, low voltage {Europe without Switzerland} | market group for | Cut-off, U".

C2-C4: The polycarbonate solid sheets are 39,0% landfilled, 32,2% incinerated and 28,8% recycled.

C2 – Transport to waste processing

Type of vehicle (truck/boat/etc.)	Distance (km)	Capacity utilisation (%), Density of products (kg/m³) and assumptions
Truck 16-32 ton	50	Ecoinvent scenario
Truck 16-32 ton	150	Ecoinvent scenario
Truck 16-32 ton	800	Ecoinvent scenario

End-of-life modules - C3 and C4

Parameter	Unit	Value
Waste for re-use	kg	0
Waste for recycling	kg	0,28
Waste for energy recovery	kg	0,32
Waste for final disposal	kg	0,39

D – Benefits and loads beyond the system boundaries

The benefits beyond the system boundaries include the end-of-waste: 28,8% recycled polycarbonate and 32,2% incinerated polycarbonate of the final product at its end-of-life. Packaging waste is also considered, following the average European End of Life (EoL) scenarios (Annex C of the PEFCR guidance) from the below table.

Product	Landfill	Incineration and/or energy recovery	Recycling	Reuse
Wooden	38%	32%	30%	0%
pallets				
PE foil packaging	39%	32%	29%	0%
PE straps	39%	32%	29%	0%
PE	39%	32%	29%	0%
packaging				
Cardboard sheet	14%	11%	75%	0%
Container with PE-	39%	32%	29%	0%
Polystyrene packaging	39%	32%	29%	0%
Octabin	14%	11%	75%	0%

Potential environmental impacts per reference flow

		Production		Construction p	Construction process stage									End-of-li	ery,	ule D		
	Al Raw material	A2 Transport	A3 Manufacturing	A4 Transport	A5 Installation		B2 Maintenance	B3 Repair	B4 Replacement				C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse, recovery, recycling	Total excl module
GWP - total (kg CO2 equiv/FU)	3,42E+00	1,05E-01	6,51E-01	2,36E-01	2,06E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,04E-02	4,98E-02	8,19E-04	8,02E-01	-8,67E-01	5,48E+00
GWP - fossil (kg CO2 equiv/FU)	3,43E+00	1,05E-01	6,99E-01	2,36E-01	3,70E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,03E-02	4,98E-02	8,08E-04	8,02E-01	-8,65E-01	5,37E+00
GWP - biogenic (kg CO2 equiv/FU)	-9,11E-03	6,15E-05	-4,99E-02	9,96E-05	1,69E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,20E-05	2,03E-05	1,04E-05	5,92E-05	-1,51E-03	1,11E-01
GWP – luluc (kg CO2 equiv/FU)	1,44E-03	4,57E-05	1,52E-03	8,76E-05	2,43E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,39E-05	1,74E-05	7,62E-07	1,56E-05	-6,40E-04	3,15E-03
ODP (kg CFC 11 equiv/FU)	1,14E-07	2,28E-08	5,81E-08	5,35E-08	1,53E-09	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	8,67E-10	1,13E-08	6,47E-11	6,53E-09	-5,51E-08	2,69E-07
AP (kg mol H+ equiv/FU)	7,28E-03	5,48E-04	6,56E-03	1,01E-03	5,19E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,01E-05	2,03E-04	3,78E-06	2,35E-04	-2,10E-03	1,59E-02
EP - freshwater (kg P equiv/FU)	3,11E-05	1,14E-06	6,60E-05	1,93E-06	1,04E-07	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,10E-06	3,91E-07	9,42E-08	7,85E-07	-2,12E-05	1,03E-04
EP - marine (kg N - equiv/FU)	1,82E-03	1,57E-04	6,91E-04	2,89E-04	2,22E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,62E-06	6,03E-05	1,14E-06	1,41E-04	-4,32E-04	3,19E-03
EP – terrestrial (mol N – equiv/FU)	1,86E-02	1,74E-03	1,43E-02	3,20E-03	2,24E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,39E-05	6,67E-04	1,39E-05	1,03E-03	-4,79E-03	3,99E-02
POCP (kg NM VOC equiv/FU)	6,00E-03	5,15E-04	2,39E-03	9,83E-04	6,43E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,38E-05	2,04E-04	3,46E-06	2,76E-04	-1,48E-03	1,05E-02
ADP – minerals&metal s (kg Sb equiv/FU)	2,24E-06	1,92E-07	4,57E-06	4,87E-07	1,20E-08	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,40E-08	9,69E-08	1,10E-09	4,41E-08	-3,63E-07	7,65E-06
ADP fossil (MJ/FU)	8,86E+01	1,57E+00	1,32E+01	3,56E+00	1,07E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,12E-01	7,50E-01	1,10E-02	2,63E-01	-1,97E+01	1,08E+02
WDP (m3 world eq. deprived/FU)	4,28E+00	5,16E-03	2,48E-01	1,03E-02	5,67E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,37E-03	2,09E-03	3,66E-05	9,52E-03	-6,55E-01	4,56E+00

GWP total = Total Global Warming Potential (Climate Change); GWP – fossil = Global Warming Potential (Climate Change) fossil, GWP-biogenic= Global Warming Potential (Climate change) biogenic GWP-luluc = Global Warming Potential (Climate Change) fossil, GWP-biogenic= Global Warming Potential (Climate change) biogenic GWP-luluc = Global Warming Potential (Climate Change) fossil = Global Warming Potential (Climate

Resource use

	Resource use																	
		Production		Construction p	process stage				Use stage					End-of-li	ery,	ule D		
	Al Raw material	A2 Transport	A3 Manufacturing	A4 Transport	A5 Installation								C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse, recovery, recycling	Total excl module
PERE (MJ equiv/FU)	9,89E-01	3,12E-02	3,11E+00	5,13E-02	3,61E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,96E-02	1,04E-02	1,53E-03	2,09E-02	-2,85E+00	4,61E+00
PERM (MJ equiv/FU)	1,18E-01	0,00E+00	1,37E+00	0,00E+00	-3,59E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,13E+00
PERT (MJ equiv/FU)	1,11E+00	3,12E-02	4,48E+00	5,13E-02	2,75E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,96E-02	1,04E-02	1,53E-03	2,09E-02	-2,85E+00	5,74E+00
PENRE (MJ equiv/FU)	8,48E+01	1,59E+00	1,42E+01	3,59E+00	4,60E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,54E-01	7,55E-01	1,39E-02	3,05E-01	-2,01E+01	1,06E+02
PENRM (MJ equiv/FU)	4,62E-02	0,00E+00	1,29E+00	0,00E+00	-3,51E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,85E-01
PENRT (MJ equiv/FU)	8,48E+01	1,59E+00	1,55E+01	3,59E+00	1,10E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,54E-01	7,55E-01	1,39E-02	3,05E-01	-2,01E+01	1,07E+02
SM (kg/FU)	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,01E-01	0,00E+00
RSF (MJ equiv/FU)	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF (MJ equiv/FU)	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW (m³ water eq/FU)	1,08E-01	1,55E-04	9,83E-03	2,67E-04	6,43E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,56E-04	5,42E-05	2,59E-06	4,70E-04	-1,79E-02	1,19E-01

PERE = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

Waste categories & output flows

	Waste categories and output flows																		
		Production		Construction p	process stage		Use stage								End-of-life stage				
	Al Raw material	A2 Transport	A3 Manufacturing	A4 Transport	A5 Installation							B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse, recovery, recycling	Total excl module	
Hazardous waste disposed (kg/FU)	2,68E-06	3,94E-06	1,49E-05	9,31E-06	2,54E-07	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,41E-07	1,97E-06	1,80E-08	6,93E-07	-7,43E-06	3,39E-05	
Non-hazardous waste disposed (kg/FU)	6,24E-02	6,89E-02	1,74E-01	1,71E-01	9,02E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,48E-04	3,59E-02	4,09E-05	4,02E-01	-2,17E-02	1,01E+00	
Radioactive waste disposed (kg/FU)	1,49E-05	1,06E-05	6,85E-05	2,42E-05	6,87E-07	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,50E-06	5,12E-06	5,17E-08	1,20E-06	-2,67E-05	1,27E-04	
Components for re-use (kg/FU)	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
Materials for recycling (kg/FU)	0,00E+00	0,00E+00	5,48E-02	0,00E+00	5,81E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,88E-01	0,00E+00	-4,01E-01	4,01E-01	
Materials for energy recovery (kg/FU)	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
Exported energy (MJ/FU)	0,00E+00	0,00E+00	1,43E-02	0,00E+00	2,56E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	-2,70E-01	2,70E-01	

Impact categories additional to EN 15804+A2

	Production			Construction process stage		Use stage							End-of-life stage				ery,	ale D
	A1 Raw material	A2 Transport	A3 Manufacturing	A4 Transport	A5 Installation	B1 Use	B2 Maintenance	B3 Repair	B4 Replacement	B5 Refurbishment	B6 Operational energy use	B7 Operational water use	C1 Deconstruction / demolition	C2 Transport	C3 Waste processing	C4 Disposal	D Reuse, recovery, recycling	Total excl module D
PM (disease incidence eq/FU)	5,56E-08	7,12E-09	3,81E-08	1,62E-08	7,20E-10	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,57E-10	3,46E-09	5,91E-11	2,06E-09	-1,12E-08	1,23E-07
IRP (kg U235 eq/FU)	1,83E-01	7,01E-03	8,38E-02	1,56E-02	4,55E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,83E-03	3,28E-03	3,74E-05	1,07E-03	-5,54E-02	2,96E-01
ETP - fw (CTUe/FU)	4,60E+01	1,29E+00	2,42E+01	2,89E+00	1,03E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,45E-01	6,01E-01	8,83E-03	2,26E+00	-8,21E+00	7,75E+01
HTP - c (CTUh/FU)	5,06E-09	4,21E-11	1,07E-09	8,34E-11	2,39E-11	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,75E-12	1,69E-11	2,81E-13	1,53E-10	-4,22E-10	6,45E-09
HTP - nc (CTUh/FU)	3,87E-08	1,39E-09	2,62E-08	3,13E-09	1,72E-10	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,28E-10	6,55E-10	8,03E-12	1,53E-09	-6,92E-09	7,19E-08
SQP (/)	3,67E+00	1,06E+00	2,56E+01	2,47E+00	1,07E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,17E-02	5,17E-01	6,66E-03	2,89E-01	-1,74E+01	3,38E+01

PM = Particulate Matter (Potential incidence of disease due to PM emissions); IRP = Ionizing Radiation Potential – human health effects (Potential Human exposure efficiency relative to U235); ETP-fw = Ecotoxicity – freshwater; (potential comparative toxic unit); HTP- c = Human Toxicity – non cancer effects; SQP = Soil Quality Index, land use related impacts

Information on Biogenic Carbon content

There is no biogenic carbon content in the product. Uptake of biogenic CO₂ within the pallets and the carton is reported in module A3, release in module A5.

	Biogenic carbon content (kg C / FU)
Biogenic carbon content in product (at the gate)	0,00E+00
Biogenic carbon content in accompanying packaging (at the gate)	4,82E-02

The global warming potential of a gas refers to the total contribution to global warming resulting from the emission of one unit of that gas relative to one unit of the reference gas, carbon dioxide, which is assigned a value of 1.

It is split up in 4:

Global Warming Potential total (GWP-total) which is the sum of GWP-fossil, GWP-biogenic and GWP-luluc

Global Warming Potential fossil fuels (GWP-fossil): The global warming potential related to greenhouse gas (GHG) emissions to any media originating from the oxidation and/or reduction of fossil fuels by means of their transformation or degradation (e.g. combustion, digestion, landfilling, etc).

Global Warming Potential biogenic (GWP-biogenic): The global warming potential related to carbon emissions to air (CO₂, CO and CH4) originating from the oxidation and/or reduction of aboveground biomass by means of its transformation or degradation (e.g. combustion, digestion, composting, landfilling) and CO₂ uptake from the atmosphere through photosynthesis during biomass growth – i.e. corresponding to the carbon content of products, biofuels or above ground plant residues such as litter and dead wood.¹

Global Warming Potential land use and land use change (GWP-luluc): The global warming potential related to carbon uptakes and emissions (CO₂, CO and CH4) originating from carbon stock changes caused by land use change and land use. This sub-category includes biogenic carbon exchanges from deforestation, road construction or other soil activities (including soil carbon emissions).

Ozone Depletion Potential

Global Warming Potential

Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life. This destruction of ozone is caused by the breakdown of certain chlorine and/or bromine containing compounds (chlorofluorocarbons or halons), Which break down when they reach the stratosphere and then catalytically destroy ozone molecules.

Acidification Potential

Acid depositions have negative impacts on natural ecosystems and the man-made environment incl. buildings. The main sources for emissions of acidifying substances are agriculture and fossil fuel combustion used for electricity production, heating and transport.

The potential to cause over-fertilization of water and soil, which can result in increased growth of biomass and following adverse effects.

It is split up in 3:

Eutrophication Potential

Eutrophication Potential – freshwater: The potential to cause over-fertilization of freshwater, which can result in increased growth of biomass and following adverse effects.

Eutrophication Potential – marine: The potential to cause over-fertilization of marine water, which can result in increased growth of biomass and following adverse effects.

Eutrophication Potential – terrestrial: The potential to cause over-fertilization of soil, which can result in increased growth of biomass and following adverse effects.

Photochemical ozone Creation Potential

Chemical reactions brought about by the light energy of the sun creating photochemical smog. The reaction of nitrogen oxides with hydrocarbons in the presence of sunlight to form ozone is an example of a photochemical reaction.

Consumption of non-renewable resources, thereby lowering their availability for future generations. Expressed in comparison to Antimony (Sb).

Abiotic Depletion Potential for non-fossil resources

The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

Measure for the depletion of fossil fuels such as oil, natural gas, and coal. The stock of the fossil fuels is formed by the total amount of fossil fuels, expressed in Megajoules (MJ).

Abiotic Depletion Potential for fossil resources

The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

¹ Carbon exchanges from native forests shall be modelled under GWP - luluc (including connected soil emissions, derived products, or residues), while their CO₂ uptake is excluded.

The impacts of chemical substances on ecosystems (freshwater).

Ecotoxicity for aquatic fresh water

The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

The impacts of chemical substances on human health via three parts of the environment: air, soil and water.

Human toxicity (carcinogenic effects)

The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

Human toxicity (noncarcinogenic effects)

The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

Particulate matter

Accounts for the adverse health effects on human health caused by emissions of Particulate Matter (PM) and its precursors (NO_X, SO_X, NH₃)

Accounts for water use related to local scarcity of water as freshwater is a scarce resource in some regions, while in others it is not.

Resource depletion (water)

The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

Ionizing radiation - human health effects

This impact category deals mainly with the eventual impact on human health of low dose ionizing radiation of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

The indicator is the "soil quality index" which is the result of an aggregation of following four aspects:

Biotic production Erosion resistance Mechanical filtration Groundwater

Land use related impacts

The aggregation is done based on a JRC model. The four aspects are quantified through the LANCA model for land use.

The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

Additional information on Release of dangerous substances to indoor air, soil and water during the use stage

Indoor air

Not relevant for the considered applications

Soil and water

Not relevant for the considered applications

BIBLIOGRAPHY

- ISO 14040:2006: Environmental Management-Life Cycle Assessment-Principles and framework.
- ISO 14044:2006: Environmental Management-Life Cycle Assessment-Requirements and guidelines.
- ISO 14025:2006: Environmental labels and Declarations-Type III Environmental Declarations-Principles and procedures.
- EN 15804+A2:2019. CEN TC350. Sustainability of construction works Environmental product declarations Core rules for the product category of construction products. European standard.
- NBN/DTD B 08-001 (BE-PCR)
- European Commission, PEFCR Guidance document, Guidance for the development of Product Environmental Footprint Category Rules (PEFCRs), version 6.3, December 2017.
- Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., and Weidema, B., 2016. The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, [online] 21(9), pp.1218–1230. Available at: http://link.springer.com/10.1007/s11367-016-1087-8 [2019].
- Document by French Ministry of the environment, energy, and the sea French Ministry of sustainable housing: "Generic data to be used for compliance with the "Energy Carbon" guidelines for new buildings" issued in 2019, provided by EPSE.
- Project report of EPSE: Life cycle assessment for solid and multiwall polycarbonate sheets produced by the European Polycarbonate Sheet Extruders; December 2021, authors: Mihaela Thuring, Hannah Van Hees and Varun Gowda

General information

Owner of the EPD, Responsible for the data, LCA and information European Polycarbonate Sheet Extruders Kortenberglaan 71 1000 Brussel BELGIUM

Based on following PCR documents

EN 15804:2012+A2:2019 NBN/DTD B 08-001 and its complement EN16757:2017

Author(s) of the LCA and EPD

Mihaela Thuring / Arthur De Jaegher / Varun Gowda Palahalli Ramesh / Hannah Van Hees mihaela.thuring@vito.be / arthur@enperas.com / varun@enperas.com

Identification of the project report

Life cycle assessment for solid and multiwall polycarbonate sheets produced by the European Polycarbonate Sheet Extruders

Verification

External independent verification of the declaration and data according to EN ISO 14025 and relevant PCR documents

Verifier:

Bernd Brandt, bernd@brandtconsulting.eu

Members of EPSE

