

tel.: (+48 22) 825-04-71 (+48 22) 825-76-55 fax: (+48 22) 825-52-86

www.itb.pl

European Technical Assessment

ETA-21/0242 of 11/03/2021

General Part

Technical Assessment Body issuing the European Technical Assessment

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

Instytut Techniki Budowlanej

R-KER-II, R-KER-II-S and R-KER-II-W

Bonded fasteners for use in concrete

RAWLPLUG S.A. ul. Kwidzyńska 6 51-416 Wrocław Poland

Manufacturing Plant no. 3

45 pages including 3 Annexes which form an integral part of this Assessment

European Assessment Document EAD 330499-01-0601 "Bonded fasteners for use in concrete" This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The R-KER-II, R-KER-II-S and R-KER-II-W are bonded anchors (injection type) consisting of a injection mortar cartridge using an applicator gun equipped with a special mixing nozzle and steel element.

The steel element consists of:

- threaded anchor rod sizes M8 to M30 made of:
 - galvanized carbon steel,
 - carbon steel with zinc flake coating,
 - stainless steel.
 - high corrosion resistant stainless steel,
 - ultra-high strength steel with zinc flake coating,

with hexagon nut and washer,

- anchor rod with inner thread sizes M6/Ø10 to M16/Ø24 made of:
 - galvanized carbon steel,
 - stainless steel,
 - high corrosion resistant stainless steel,
- rebar sizes Ø8 to Ø32.

The steel element is placed into a drilled hole previously injected (using an applicator gun) with a mortar with a slow and slight twisting motion. The rod or rebar is anchored by the bond between steel element, mortar and concrete.

The threaded rods are available for all diameters with three type of tip end: a one side 45° chamfer, a two sides 45° chamfer or a flat. The threaded rods are either delivered with the mortar cartridges or commercial standard threaded rods purchased separately. The mortar cartridges are available in different sizes and types.

Description of the products is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in Section 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B.

The performances given in this European Technical Assessment are based on an assumed working life of the anchor of 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Performance of the product

3.1.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load and shear load (static and quasi static loading), displacements	See Annex C1 to C15
Characteristic resistance for seismic performance category C1, displacements	See Annex C16 to C18

3.1.2 Hygiene, health and the environment (BWR 3)

No performance assessed.

3.2 Methods used for the assessment

The assessment of the products has been made in accordance with the EAD 330499-01-0601.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 96/582/EC of the European Commission the system 1 of assessment and verification of constancy of performance (see Annex V to regulation (EU) No 305/2011) applies.

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document (EAD)

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Instytut Techniki Budowlanej.

For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.

Issued in Warsaw on 11/03/2021 by Instytut Techniki Budowlanei

Anna Panek, MSc/ Deputy Director of ITB

Threaded anchor rods L-total length of anchor rod DETAIL A B For M12 - M30 Marking: Identifying mark - R Size rod: 'number' for M8, M10; M'number' for M12 to M30 Property: class steel (5.8; 8.8) or stainless steel (A4) (HC) DETAIL A L-total length of anchor rod For M12 - M30 Marking: Identifying mark - R Size rod: 'number' for M8, M10; M'number' for M12 to M30 Property: class steel (5.8; 8.8) or stainless steel (A4) [HC) DETAIL B DETAIL C Notched Mark Version Painted Mark Version Depth hef Depth hef 1. Anchor rod R-STUDS= 2. 45° shape with anchor rod 3. The flat end of anchor rod 4. Anchor rod R-STUDS=[88], (A4), (HC) with the hexagonal tip 5. Hexagonal nut 6. Washer R-KER-II, R-KER-II-S and R-KER-II-W

Product description Threaded anchor rods

Annex A1

Anchor rods with inner thread

Marking: R - Identifying mark ITS - product index

Z - carbon steel or A4 - stainless steel

XX - thread size

YYY - length of sleeve

Rebar

embedment depth marking hef

R-KER-II, R-KER-II-S and R-KER-II-W

Product description

Anchor rods with inner thread and rebar

Annex A2

Table A1: Threaded rods

		Desig	nation		
Part	Steel, zinc plated	Stainless steel	High corrosion resistance stainless steel (HCR)	Ultra-high Strength Steel, coated	
Threaded rod	Steel, property class 5.8 to 12.9 acc. to EN ISO 898-1 electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684 or non-electrolytically applied zinc flake coating ≥ 8 µm acc. EN ISO 10683	5.8 to 12.9 acc. to EN ISO 898-1 electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684 or non-electrolytically pplied zinc flake coating ≥ 8 µm Steel 1.4401, 1.4404, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506 Corrosion resistance class CRC III acc. to EN 1993-1-4:2006 +A1:2015		Steel, property class 14.8U to 16.8U acc. to USCAR- UHSFG- 1416U non-electrolytically zinck flake coating ≥ 8 μm acc. EN ISO 10683	
Hexagon nut	Steel, property class 5 to 12, acc. to EN ISO 898-2; electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684 or non-electrolytically applied zinc flake coating ≥ 8 µm acc. EN ISO 10683	Steel 1.4401, 1.4404, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506 Corrosion resistance class CRC III acc. to EN 1993-1-4:2006 +A1:2015	Steel 1.4529, 1.4565, 1.4547 acc. to EN 10088; property class 70 acc. to EN ISO 3506 Corrosion resistance class CRC V acc. to EN 1993-1-4:2006 +A1:2015	Steel, property class 12 to 16 acc. to USCAR- UHSFG- 1416U non-electrolytically applied zinc flake coating ≥ 8 µm acc. EN ISO 10683	
Washer	Steel acc. to EN ISO 7089; electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684 or non-electrolytically applied zinc flake coating ≥ 8 µm acc. EN ISO 10683	Steel 1.4401, 1.4404, 1.4571 acc. to EN 10088 Corrosion resistance class CRC III acc. to EN 1993-1-4:2006 +A1:2015	Steel 1.4529, 1.4565, 1.4547 acc. to EN 10088 Corrosion resistance class CRC V acc. to EN 1993-1-4:2006 +A1:2015	Steel acc. to EN ISO 7089; non-electrolytically applied zinc flake coating ≥ 8 μm acc. EN ISO 10683	

Commercial threaded rods (in the case of rods made of galvanized steel – standard rods with property class ≤ 8.8 only), with:

- material and mechanical properties according to Table A1,
- confirmation of material and mechanical properties by inspection certificate 3.1 according to EN- 0204:2004;
 the documents shall be stored,
- marking of the threaded rod with the embedment depth.

Note: Commercial threaded rods made of galvanized steel with property class above 8.8 are not permitted in some Member States.

R-KER-II, R-KER-II-S and R-KER-II-W	Annex A3
Product description Materials	of European Technical Assessment ETA-21/0242

Table A2: Rods with inner threaded

	Material							
Part	Steel, zinc plated	Stainless steel	High corrosion resistance stainless steel (HCR)					
Rod with inner threaded	Steel, property class 5.8 to 8.89 acc. to EN ISO 898-1 electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684	Steel 1.4401, 1.4404, 1.4571	Steel 1.4529, 1.4565, 1.4547 acc. to EN 10088; property class 70 acc. to EN ISO 3506 Corrosion resistance class CRC V acc. to EN 1993-1-4:2006 +A1:2015					

Table A3: Reinforcing bars according to EN 1992-1-1, Annex C

Product form		Bars and de-co	iled rods	
Class	В	С		
Characteristic yield strength f _{yk} or f _{0,2k} [N/mm ²]	400 to	600		
Minimum value of $k = (f_t / f_y)_k$		≥ 1,08 ≥ 1,° < 1,°		
Characteristic strain at maximum force, ε _{uk} [%]	ic strain at maximum force, ε _{uk} [%]			
Bendability		Bend / Reb	end test	
Maximum deviation from nominal mass (individual bar) [%]				
Bond: minimum relative rib area, f _{R,min}	Nominal bar size [mm] 8 to 12 > 12	0,04 0,05		

Rib height h: The maximum rib height h_{rib} shall be: $h_{rib} \le 0.07 \cdot \emptyset$

Table A4: Injection mortars

Product	Composition
R-KER-II, R-KER-II-S and R-KER-II-W (two component injection mortars)	Additive: quartz Bonding agent: vinyl ester mortar styrene free Hardener: dibenzoyl peroxide

R-KER-II, R-KER-II-S and R-KER-II-W	Annex A4
Product description Materials	of European Technical Assessment ETA-21/0242

Specification of intended use

Anchorages subject to:

Static and quasi-static loads: threaded rod size M8 to M30, rod with inner thread sizes M6/Ø10 to M16/Ø24 and rebar Ø8 to Ø32.

Seismic performance category C1: threaded rod size M8 to M30 and rebar Ø8 to Ø32

Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 to C50/60 according to EN 206:2013+A1:2016.
- Cracked and uncracked concrete.

Temperature ranges:

Installation temperature (temperature of substrate):

- -5°C to +40°C in case of R-KER-II (standard version).
- +5°C to +40°C in case of R-KER-II-S (version for summer season).
- -20°C to +40°C in case of R-KER-II-W (version for winter season).

In-service temperature:

The anchors may be used in the following temperature range:

- -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).
- -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C).
- -40°C to +120°C (max. short term temperature +120°C and max. long term temperature +80°C).

Use conditions (environmental conditions):

- Structures subject to dry internal conditions: all materials.
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class (CRC): elements made of stainless steel or high corrosion resistance stainless steel (HCR).

Installation:

- Dry or wet concrete (use category I1).
- Flooded holes (use category I2).
- Installation direction D3 (downward and horizontal and upwards installation).
- The anchors are suitable for hammer drilled holes or by special method with cleaning during drill a hole using hollow drill bit with vacuum cleaner.

Design methods:

- Anchorages under static or quasi-static loads are designed in accordance to EN 1992-4:2018 and EOTA Technical Report TR 055.
- Anchors are designed under the responsibility of the engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement
 or to supports, etc.).
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance to EN 1992-4:2018.

R-KER-II, R-KER-II-S and R-KER-II-W

Annex B1

Intended use Specifications

Table B1: Installation parameters – threaded anchor rod

Size		М8	M10	M12	M16	M20	M24	M30
Diameter of anchor rod	d [mm]	8	10	12	16	20	24	30
Nominal drilling diameter	d _o [mm]	10	12	14	18	24	28	35
Maximum diameter hole in the fixture	d _f [mm]	9	12	14	18	22	26	33
Effective embedment depth	h _{ef,min} [mm]	60	60	60	60	80	96	120
	h _{ef,max} [mm]	160	200	240	320	400	480	600
Depth of the drilling hole	h _o [mm]				h _{ef} + 5 mm			
Minimum thickness of the concrete slab	h _{min} [mm]	$h_{ef} + 30 \text{ mm}; \ge 100 \text{ mm}$ $h_{ef} + 2d_0$						
Maximum installation torque	T _{inst,max} [N·m]	10	20	40	80	120	160	200
Minimum spacing	s _{min} [mm]	40	40	40	40	40	50	60
Minimum edge distance	c _{min} [mm]	40	40	40	40	40	50	60

R-KER-II, R-KER-II-S and R-KER-II-W	Annex B2
Intended use Installation parameters – threaded anchor rod	of European Technical Assessment ETA-21/0242

Table B2: Installation parameters – anchor rod with inner thread

Size		M6/ Ø10 /75	M8/ Ø12/ 75	M8/ Ø12/ 90	M10/Ø 16/ 75	M10/Ø 16/ 100	M12/Ø 16/ 100	M16/Ø 24/ 125
Nominal drilling diameter	d _o [mm]	12	14	14	20	20	20	28
Maximum diameter hole in the fixture	d _f [mm]	7	9	9	12	12	14	18
Effective embedment depth	h _{ef} = h _{nom} [mm]	75	75	90	75	100	100	125
Thread length, min	I _s [mm]	24	25	25	30	30	35	50
Depth of the drilling hole	h₀ [mm]				h _{ef} + 5 mm			
Minimum thickness of the concrete slab	h _{min} [mm]	ı	n _{ef} + 30 mm	n; ≥ 100 mr	n		h _{ef} + 2d ₀	
Maximum installation torque	T _{inst,max} [N·m]	3	5	5	10	10	20	40
Minimum spacing	s _{min} [mm]	40	40	50	40	50	50	70
Minimum edge distance	c _{min} [mm]	40	40	50	40	50	50	70

R-KER-II,	, R-KER-II-S	and R-KER-II-W
-----------	--------------	----------------

Intended use

Installation parameters – anchor rod with inner thread

Annex B3

Table B3: Installation parameters - rebar

Size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Nominal drilling diameter	d ₀ [mm]	12	14	18	18	22	26	32	40
Effective embedment	h _{ef,min} [mm]	60	60	60	60	64	80	100	128
depth	h _{ef,max} [mm]	160	200	240	240	320	400	500	640
Depth of the drilling hole	h₀[mm]	h _{ef} + 5 mm							
Minimum thickness of the concrete slab	h _{min} [mm]	he	h _{ef} + 30 mm; ≥ 100 mm				h _{ef} -	+ 2d₀	
Minimum spacing	s _{min} [mm]	40	40	40	40	40	40	50	70
Minimum edge distance	c _{min} [mm]	40	40	40	40	40	40	50	70

Intended use Installation parameters – rebar Annex B4

Table B4: Maximum processing time and minimum curing time

R-KER-II (standard version)						
Temperature of mortar [°C]	Temperature of substrate [°C]	Maximum processing (open) time [min]	Minimum curing time 1) [min]			
+5	-5	40	1440			
+5	0	30	180			
+5	+5	15	90			
+10	+10	8	60			
+15	+15	5	60			
+20	+20	2,5	45			
+25	+25	2	45			
+25 +30		2	45			
+25	+35	1,5	30			
+25	+40 1,5 3					

Table B5: Maximum processing time and minimum curing time

R-KER-II-S (version for summer season)							
Temperature of mortar [°C]	Temperature of substrate [°C]	Maximum processing time [min.]	Minimum curing time 1) [min.]				
+5	+5	40	720				
+10	+10	20	480				
+15	+15	15	360				
+20	+20	10	240				
+25	+25	9,5	180				
+25	+30	7	120				
+25	+35	6,5	120				
+25	+40	6,5	90				

Table B6: Maximum processing time and minimum curing time

R-KER-II-W (version for winter season)							
Temperature of mortar [°C]	Temperature of substrate [°C]	Maximum processing time [min.]	Minimum curing time ¹ [min.]				
+5	-20	100	1440				
+5	-15	60	960				
+5	-10	40	480				
+5	-5	20	240				
+5	0	14	120				
+5	+5	9	60				
+10	+10	5,5	45				
+15	+15	3	30				
+20	+20	2	15				
+25	+25	1,5	10				
+25	+30	1,5	10				
+25	+35	1	5				
+25	+40	1	5				

¹⁾ The minimum time from the end of the mixing to the time when the anchor may be torque or loaded (whichever is longer). Minimum mortar temperature for installation +5°C; maximum mortar temperature for installation +25°C. For wet condition and flooded holes the curing time must be doubled.

R-KER-II, R-KER-II-S and R-KER-II-W	Annex B5
Intended use Maximum processing time and minimum curing time	of European Technical Assessment ETA-21/0242

Dispensers	Cartridge or foil capsule size
	380, 400, 410 and 420 ml
Manual gun for coaxial cartridges	
	345 ml
Manual gun for side by side cartridges	
	150, 175, 280, 300 and 310 ml
Manual gun for foil capsule in cartridge and coaxial cartridges	
The state of the s	300 to 600 ml
Manual gun for foil capsules CFS+	
Cordless dispenser gun for coaxial cartridges	380, 400, 410 and 420 ml
	300 to 600 ml
Cordless dispenser gun for foil capsules	
	380, 400, 410 and 420 ml
Pneumatic gun for coaxial cartridges	

R-KER-II, R-KER-II-S and R-KER-II-W	Annex B7
Intended use Tools (2)	of European Technical Assessment ETA-21/0242

Table B7: Brush diameter for threaded rod

Threaded rod diameter		М8	M10	M12	M16	M20	M24	M30	
dь	Brush diameter	[mm]	12	14	16	20	26	30	37

Table B8: Standard brush diameter for rod with inner thread

	Threaded rod diame	ter	M6/Ø10	M8/Ø12	M10/Ø16	M12/ Ø16	M16/Ø24	
d _b	Brush diameter	[mm]	16	16	22	22	30	

Table B9: Brush diameter for rebar

Rebar diameter		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32	
dь	Brush diameter	[mm]	14	16	20	20	24	28	37	42

Table B10: Piston plug size

Hole diameter [mm]	16	18	20	22	24	25	26	28	30	32	35	40	50
Piston plug description	Ø16	Ø18	Ø20 t	o Ø22	Ø	24 to Ø	26	Ø28	Ø30	to 32	Ø35	Ø40	Ø50

R-KER-II, R-KER-II-S and R-KER-II-W

Intended use Tools (2) Annex B8

	Drill hole to the required diameter and depth using a rotary percussive machine
a. b.	 Hole cleaning. Clean the hole with brush and hand pump: starting from the drill hole bottom blow the hole at least 4 times using the hand pump, using the specified brush, mechanically brush out the hole at least 4 times, starting from the drill hole bottom, blow at least 4 times with the hand pump. Cleaning hole with compressed air: starting from the drill hole bottom blow the hole at least twice by compressed air (6 atm), using the specified brush, mechanically brush out the hole at least twice, blow the hole at least twice by compressed air (6atm), brush out the hole at least twice, blow over the hole at least twice by compressed air (6atm).
The way	Insert cartridge into dispenser and attach nozzle. Dispense to waste until even colour is obtained (min. 10 cm).
-	Insert the mixing nozzle to the far end of the hole and inject mortar, slowly withdrawing the nozzle as the hole is filled to 2/3 of its depth.
2	Immediately insert the stud, slowly and with slight twisting motion. Remove any excess mortar around the hole before it sets.
Ø —	Leave the fixing undisturbed until the curing time elapses.
V =	Attach fixture and tighten the nut to the required installation torque. The applied installation torque cannot exceed T _{inst,max} .
R-KER-II, R-KER-II-S and R-K	ER-II-W Anney RQ

Intended use

Installation instruction - threaded rod - standard cleaning

Annex B9

	Drill hole to the required diameter and depth using a hollow drill bit with vacuum cleaner.
No x	Insert cartridge into dispenser and attach nozzle. Dispense to waste until even colour is obtained.
	Insert the mixing nozzle to the far end of the hole and inject mortar, slowly withdrawing the nozzle as the hole is filled to 2/3 of its depth.
2	Immediately insert the stud, slowly and with slight twisting motion. Remove any excess mortar around the hole before it sets.
	Leave the fixing undisturbed until the curing time elapses.
V = 0	Attach fixture and tighten the nut to the required installation torque. The applied installation torque cannot exceed T _{inst,max} .

Intended use

Installation instruction – threaded rod – cleaning with hollow drill bit (special cleaning method)

Annex B10

	Drill hole to the required diameter and depth using a rotary percussive machine.
a. b.	 Hole cleaning. Clean the hole with brush and hand pump: starting from the drill hole bottom blow the hole at least 4 times using the hand pump, using the specified brush, mechanically brush out the hole at least 4 times, starting from the drill hole bottom, blow at least 4 times with the hand pump. Cleaning hole with compressed air: starting from the drill hole bottom blow the hole at least twice by compressed air (6 atm), using the specified brush, mechanically brush out the hole at least twice, blow the hole at least twice by compressed air (6 atm), brush out the hole at least twice, blow over the hole at least twice by compressed air (6 atm).
No **	Insert cartridge into dispenser and attach nozzle. Dispense to waste until even colour is obtained (min. 10 cm).
*	Insert the mixing nozzle to the far end of the hole and inject mortar, slowly withdrawing the nozzle as the hole is filled to 2/3 of its depth.
4	Immediately insert the rod with inner thread, slowly and with slight twisting motion. Remove any excess mortar around the hole before it sets.
Ø -	Leave the fixing undisturbed until the curing time elapses.
A	Attach fixture and tighten the bolt to the required installation torque. The applied installation torque cannot exceed Tinst,max.

Intended use

Installation instruction – anchor rod with inner thread – standard cleaning

Annex B12

	Drill hole to the required diameter and depth using a hollow drill bit with vacuum cleaner.
No w	Insert cartridge into dispenser and attach nozzle. Dispense to waste until even colour is obtained (min. 10 cm).
	3. Insert the mixing nozzle to the far end of the hole and inject mortar, slowly withdrawing the nozzle as the hole is filled to 2/3 of its depth.
*	Immediately insert the rod with inner thread, slowly and with slight twisting motion. Remove any excess mortar around the hole before it sets.
	Leave the fixing undisturbed until the curing time elapses.
	6. Attach fixture and tighten the bolt to the required installation torque. The applied installation torque cannot exceed T _{inst,max} .

R-KER-II, R-KER-II-S and R-KER-II-W	Annex B13
Intended use Installation instruction–anchor rod with inner thread – cleaning with hollow drill bit (special cleaning method)	of European Technical Assessment ETA-21/0242

	Drill hole to the required dia using a rotary percussive m	
a. b.	2. Hole cleaning. a. Cleaning hole with brush ar starting from the drill hole b at least 4 times using the hole at least 4 times starting from the drill hole b 4 times with the hand pump b. Cleaning hole with compress starting from the drill hole b at least twice by compresses using the specified brush, nout the hole at least twice, blow the hole at least twice (6 atm), brush out the hole at least to blow over the hole at least to air (6atm).	ottom blow the hole and pump, nechanically brush s, ottom, blow at least o
W X	Insert cartridge into dispense nozzle. Dispense to waste obtained (min. 10 cm).	
R Total	Insert the mixing nozzle to hole and inject mortar, slow nozzle as the hole is filled to the hole.	ly withdrawing the
	Immediately insert the reba slight twisting motion. Rem mortar around the hole before	ove any excess
	Leave the fixing undisturbe time elapses.	d until the curing
R-KER-II, R-KER-II-S and R-K		Annex B14 of European Technical Assessment

Installation instruction - rebar - standard cleaning

ETA-21/0242

	Drill hole to the required diameter and depth using a hollow drill bit with vacuum cleaner.
No we	Insert cartridge into dispenser and attach nozzle. Dispense to waste until even colour is obtained (min. 10 cm).
	Insert the mixing nozzle to the far end of the hole and inject mortar, slowly withdrawing the nozzle as the hole is filled to 2/3 of its depth.
<u> </u>	Immediately insert the rebar, slowly and with slight twisting motion. Remove any excess mortar around the hole before it sets.
	Leave the fixing undisturbed until the curing time elapses.

Intended use

Installation instruction – rebar – cleaning with hollow drill bit (special cleaning method)

Annex B15

		M8	M10	M12	M16	M20	M24	M30
		780						1957
N _{Rk,s}	[kN]	18	29	42	78	122	176	280
γMs	[-]				1,50			
$N_{Rk,s}$	[kN]	29	46	67	125	196	282	448
γMs	[-]				1,50			
				,	,	,		,
$N_{Rk,s}$		36	58	84	157	245	353	561
γMs	[-]				1,40			
						1		
N _{Rk,s}		43	69	101		294	423	673
γMs	[-]				1,40			
T				1				
N _{Rk,s}		25	40	59		171	247	392
γMs	[-]				1,87			
N _{Rk,s}		29	46	67		196	282	44
γMs					1,60			
N _{Rk,s}		25	40	59		171	247	39:
γMs					1,87			
			04	440	040	0.40	10.1	70
		51	81	118		343	494	78
					1,5			
		5/	97	126	225	267	520	84
		J 4	01	120		307	329	04
					1,0			
		58	92	134 9	251	392	564	89
		- 00	02	104,0		002	504	03
		C20/25 f	or a work	cina life o		·c		523.176
andre in unc	acked concrete	C20/23 10	JI a WOIF	ang me c	or Ju year	3		
1	2-					201080		
τ _{Rk,ucr,50}			30000		13,0	10,0	10,0	8,0
τ _{Rk,ucr,50}	[N/mm ²]	16,0	15,0	15,0	13,0	10,0	10,0	8,0
τ _{Rk,ucr,50}	[N/mm ²]	8,5	8,0	8,0	7,0	5,5	5,5	4,5
	C30/37				1,04			
We	C40/50				1.07			
1								
-					100000			
0								
Ψ' _{sus}								
	80°C / 120°C				0,61			
ailure in unc	racked concrete	C20/25 fc	or a work	king life o	f 100 yea	irs		
							4 - 4 1	
TRK upr 100	[N/mm²]	15.0	15.0	14.0	13.0	10.0	9.5	8,0
								8,0
VRK,ucr,100		10,0	10,0	1-7,0		10,0	3,5	0,0

Ψс	C40/50				1,07			
	NRK,S YMS NRK,S YMS NRK,S YMS TOD A4-70 NRK,S YMS TOD A4-80 NRK,S YMS Steel grade 70 NRK,S YMS TOD A4-80 NRK,S YMS TOD A4-80 NRK,S YMS TOD A4-80 TRK,ucr,50 TRK,ucr,50	N _{RK,S}	N _{Rk,s}	N _{RK,S}	N _{Rk,s}	N _{RK,8}	N _{Rk,6} [kN] 18 29 42 78 122 Y _{Ms} [-]	NRK.5 [kN] 18 29 42 78 122 176 YMS

Characteristic resistance under tension loads for threaded rod in uncracked concrete

Annex C1

Table C1 (continuation)

Size				M8	M10	M12	M16	M20	M24	M30	
Concrete cone failure	in uncracked c	oncrete									
Factor for uncracked co	ncrete	k _{ucr,N}	[-]				11,0				
Edge distance		C _{ucr,N}	[mm]				1,5 · h _{ef}				
Spacing		S _{ucr,N}	[mm]				3,0 · h _{ef}				
Splitting failure											
		C _{cr,sp} for h _{min}				2,0 · h _{ef}			1,5	1,5 ⋅ h _{ef}	
Edge distance		$c_{cr,sp}$ for $h_{min} < h^{2)} < 2 \cdot h_{ef}$ ($c_{cr,sp}$ from linear interpolation)	[mm]			2 x h _{el} h _{min}		C _{cr,sp}			
		$c_{cr,sp}$ for $h^{2} \ge 2 \cdot h_{ef}$		C _{cr,N}							
Spacing		S _{cr,sp}	[mm]	2,0 · C _{cr,sp}							
Installation safety fac	tor for combine	d pull-out, concrete co	ne and sp	litting fa	ilure	Description of			# // William		
Installation safety factors for in use	standard cleaning						1,0				
category I1	special cleaning	26.	[-]	1,2			1,0			1,2	
Installation safety factors for in use category I2	standard cleaning	γinst	[-]				1,0				
	special cleaning			1,2			1,0			1,2	

 $^{^{1)}}$ In the absence of other national regulation. $^{2)}$ h – concrete member thickness.

R-KER-II, R-KER-II-S and R-KER-II-W	Annex C2
Characteristic resistance under tension loads for threaded rod in uncracked concrete	of European Technical Assessment ETA-21/0242

Size			M8	M10	M12	M16	M20	M24	M30
Steel failure	A COMPANY		Tally souls	SECTION S		136-24096			
Steel failure with threaded rod grade 5.8					***************************************				
Characteristic resistance	N _{Rk,s}	[kN]	18	29	42	78	122	176	280
Partial safety factor 1)	γMs	[-]				1,50			
Steel failure with threaded rod grade 8.8									
Characteristic resistance	N _{Rk,s}	[kN]	29	46	67	125	196	282	448
Partial safety factor 1)	γMs	[-]				1,50		•	•
Steel failure with threaded rod grade 10.9									
Characteristic resistance	N _{Rk,s}	[kN]	36	58	84	157	245	353	561
Partial safety factor 1)	γмs	[-]				1,40			
Steel failure with threaded rod grade 12.9)								
Characteristic resistance	$N_{Rk,s}$	[kN]	43	69	101	188	294	423	673
Partial safety factor 1)	γMs	[-]				1,40			
Steel failure with stainless steel threaded	rod A4-70								
Characteristic resistance	$N_{Rk,s}$	[kN]	25	40	59	109	171	247	392
Partial safety factor 1)	γмѕ	[-]				1,87			
Steel failure with stainless steel threaded	rod A4-80								
Characteristic resistance	N _{Rk,s}	[kN]	29	46	67	125	196	282	448
Partial safety factor 1)	γMs	[-]				1,60			
Steel failure with high corrosion resistant	steel grade 70								
Characteristic resistance	N _{Rk,s}	[kN]	25	40	59	109	171	247	392
Partial safety factor 1)	γмѕ	[-]				1,87			
Steel failure with ultra-high strength steel		grade 14.8				•			
Characteristic resistance	N _{Rk,s}	[kN]	51	81	118	219	343	494	785
Partial safety factor 1)	γMs	[-]				1,5			
Steel failure with ultra-high strength steel	threaded rod	grade 15.8							
Characteristic resistance	$N_{Rk,s}$	[kN]	54	87	126	235	367	529	841
Partial safety factor 1)	γмѕ	[-]			10.300 9.000 9.000	1,5		0.000	
Steel failure with ultra-high strength steel	threaded rod	grade 16.8							
Characteristic resistance	N _{Rk,s}	[kN]	58	92	134,9	251	392	564	897
Partial safety factor 1)	γMs	[-]	5-14-1-5-18-2			1,5			
Combined pull-out and concrete cone	failure in crac	ked concrete C2	0/25 for a	a working	g life of 5	0 years			
Characteristic bond resistance									NB RE
Temperature range I: 24°C / 40°C	T _{Rk,cr,50}	[N/mm²]	10,0	11,0	11,0	9,5	7,5	7,0	5,0
Temperature range II: 50°C / 80°C		[N/mm²]	10,0	11,0	11,0	9,5			-
	T _{Rk,cr,50}						7,5	7,0	5,0
Temperature range III: 80°C / 120°C	T _{Rk,cr,50}	[N/mm²]	5,0	6,0	6,0	5,0	4,0	4,0	3,0
		C30/37				1,04			
Increasing factor	Ψα	C40/50				1,07			
		C50/60				1,09			
		24°C / 40°C				0,72			
Sustained load factor	Ψ ⁰ sus	50°C / 80°C				0,72			-
oustained load factor	2 5145	80°C / 120°C							
				Eligiporos gar	11. 772.07 172.07	0,61			
Combined pull-out and concrete cone	tailure in crac	ked concrete C2	0/25 for a	a working	g life of 1	00 years	The state of		
Characteristic bond resistance									
Temperature range I: 24°C / 40°C	TRk,ucr, 100	[N/mm ²]	9,5	10,0	10,5	9,5	7,5	7,0	5,0
Temperature range II: 50°C / 80°C	TRk,ucr,100	[N/mm ²]	9,5	10,0	10,5	9,5	7,5	7,0	5,0
	,,	C30/37				1,04			-,-
Increasing factor						100 may 100 ma			(40)
Increasing factor	Ψc	C40/50 C50/60		-		1,07			

Characteristic resistance under tension loads for threaded rod in cracked concrete

Annex C3

Table C2 (continuation)

Size	M8 M	10 M	12	M16	M20	M24	M30			
Concrete cone failure	in cracked co	oncrete								
Factor for cracked con-	crete	k _{cr,N}	[-]				7,7			
Edge distance		C _{cr,N}	[mm]			1,	,5 ⋅ h _{ef}			
Spacing		S _{cr,N}	[mm]			3,	,0 ⋅ h _{ef}			
Splitting failure										
		c _{cr,sp} for h _{min}			2,0	· h _{ef}			1,5	· h _{ef}
Edge distance		$c_{cr,sp}$ for $h_{min} < h^{2)} < 2 \cdot h_{ef}$ ($c_{cr,sp}$ from linear interpolation)	[mm]			2 x h _{ef}	Ca Np	cr. sp		
		$c_{cr,sp}$ for $h^{2} \ge 2 \cdot h_{ef}$	$c_{cr,sp}$ for $h^{2} \ge 2 \cdot h_{ef}$		C _{cr,N}					
Spacing		S _{cr,sp}	[mm]	2,0 · c _{cr,sp}						
Installation safety fac	tor for combin	ned pull-out, concrete o	one and s	plitting failur	е				2-16-11	
Installation safety factors for in use	standard cleaning		[-]				1,0			
category I1	special cleaning			1,2			1,0			1,2
Installation safety factors for in use category I2	standard cleaning	Yinst	1.1				1,0			
	special cleaning			1,2			1,0			1,2

¹⁾ In the absence of other national regulation.

R-KER-	II. R	-KER-I	I-S and	R-KER-	·II-W
--------	-------	--------	---------	--------	-------

Characteristic resistance under tension loads for threaded rod in cracked concrete

Annex C4

²⁾ h – concrete member thickness.

Table C3: Characteristic resistance under tension load for rod with inner thread in uncracked concrete

Size	M6 /Ø10	M8/ Ø12	M10/ Ø16	M12/ Ø16	M16/ Ø24		
Steel failure							
Steel failure with rod with inner thread gra	de 5.8						
Characteristic resistance	N _{Rk,s}	[kN]	10	18	29	42	78
Partial safety factor 1)	γMs	[-]			1,50	-	
Steel failure with rod with inner thread gra	de 8.8						
Characteristic resistance	N _{Rk,s}	[kN]	16	29	46	67	125
Partial safety factor 1)	γMs	[-]			1,50		
Steel failure with stainless steel rod with in	nner thread thr	eaded rod A4-70					
Characteristic resistance	N _{Rk,s}	[kN]	14	25	40	59	109
Partial safety factor 1)	Ϋ́Ms	[-]			1,87		
Steel failure with stainless steel rod with in	nner thread A4	-80					
Characteristic resistance	N _{Rk.s}	[kN]	16	29	46	67	125
Partial safety factor 1)	γMs	[-]			1,60		
Steel failure with high corrosion resistant							
Characteristic resistance	N _{Rk.s}	[kN]	14	25	40	59	109
Partial safety factor 1)	[-]	1,87					
Combined pull-out and concrete cone	γ _{Ms} failure in uncr	acked concrete C	20/25 for a	working life	of 50 years		
Temperature range I: 24°C / 40°C	TRk.ucr.50	[N/mm ²]	11,0	14,0	11,0	11,0	8,0
Temperature range II: 50°C / 80°C	T _{Rk,ucr,50}	[N/mm²]	11,0	14,0	11,0	11,0	8,0
Temperature range III: 80°C / 120°C	TRk.ucr.50	[N/mm²]	6,0	7,0	6,0	6,0	4,0
		C30/37		1,	04		1,00
Increasing factor	Ψο	C40/50		1.	07		1,00
g	1	C50/60		1,00			
		24°C/40°C			1,00		
Sustained load factor	Ψ^o_{sus}	50°C/80°C			0,72 0,72		
Cuciamos roda racion	2 3113	80°C / 120°C					
Combined pull-out and concrete cone	failure in uncr		20/25 for a	working life	0,61 of 100 years		
Temperature range I: 24°C / 40°C	τ _{Rk,ucr,100}	[N/mm²]	10.0	13,0	10.0	11,0	8,0
Temperature range II: 50°C / 80°C	τ _{Rk,ucr,100}	[N/mm²]	10,0	13,0	10,0	11,0	8,0
2011 to 21 200 to 3 7 20 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	*FK,461,100	C30/37	1 -	7000	04	,-	1,00
Increasing factor	Ψο	C40/50			07	·	1.00
more desiring factor	Ψ¢	C50/60	1,09				1,00
		C30/60		1,	00		1,00

R-KER-	·II. R	-KER-I	I-S and	R-KER-	-II-W

Characteristic resistance under tension loads for rod with inner thread in uncracked concrete

Annex C5

Table C3: (continuation)

Resistance to concre	ete cone failur	e in uncracked concrete)							
Factor for ucracked co	oncrete	k _{ucr,N}	[-]	11,0						
Edge distance		C _{ucr,N}	[mm]	1,5 · h _{ef}						
Spacing		S _{ucr,N}	[mm]	3,0 ⋅ h _{ef}						
Splitting failure										
		C _{cr,sp} for h _{min}		2,0 · h _{ef} 1,5 · h _{ef}						
Edge distance		$c_{cr,sp}$ for $h_{min} < h^{2} < 2 \cdot h_{ef}$ ($c_{cr,sp}$ from linear interpolation) $c_{cr,sp}$ for $h^{2} \ge 2 \cdot h_{ef}$	[mm]	2 x h _{et} h _{mn} C _{Cr,Np} C _{Cr,Sp}						
Spacing		S _{cr.sp}	[mm]	2,0 · C _{cr,sp}						
	ctor for combi	ned pull-out, concrete o	25.00.000.000.000.000.000.000.000.000.00							
Installation safety factors for use	standard cleaning			1,0						
category I1 ¹⁾ Installation safety factors for use special cleaning standard cleaning		Yinst	[-]	1,0						
		Tillet	.,	1,0						
category I2 ¹⁾	special cleaning			1,0						

 $^{^{1)}}$ In the absence of other national regulation. $^{2)}$ h – concrete member thickness.

R-KER-II, R-KER-II-S and R-KER-II-W	Annex C5
Characteristic resistance under tension loads for rod with inner thread in uncracked concrete	of European Technical Assessment ETA-21/0242

Table C4: Characteristic resistance under tension loads for rod with inner thread in cracked concrete

Size			M6 /Ø10	M8/ Ø12	M10/ Ø16	M12/ Ø16	M16/ Ø24
Steel failure				1 564 1546			
Steel failure with rod with inner thread grade 5.	8						
Characteristic resistance	N _{Rk,s}	[kN]	10	18 29 42		78	
Partial safety factor 1)	γмѕ	[-]			1,50		
Steel failure with rod with inner thread grade 8.	8						
Characteristic resistance	N _{Rk,}	[kN]	16	29	46	67	125
Partial safety factor 1)	γMs	γ _{Ms} [-] 1,50					
Steel failure with stainless steel rod with inner to	hread A4-70						
Characteristic resistance	N _{Rk,}	[kN]	14	25	40	59	109
Partial safety factor 1)	γмѕ	[-]			1,87		
Steel failure with stainless steel rod with inner to	hread rod A4-80	4					
Characteristic resistance	N _{Rk,}	[kN]	16	29	46	67	125
Partial safety factor 1)	γMs	[-]	1,60				
Steel failure with high corrosion resistant steel	grade 70						
Characteristic resistance	N _{Rk,}	[kN]	14	25	40	59	109
Partial safety factor 1)	al safety factor 1) γ_{Ms} [-] 1,87						
Combined pull-out and concrete cone failur	e in cracked co	ncrete C20/25 for	a working	g life of 50) years		
Temperature range I: 24°C / 40°C	T _{Rk,cr,50}	[N/mm ²]	10,0	10,0	9,5	9,0	4,0
Temperature range II: 50°C / 80°C	τ _{Rk,cr,50}	[N/mm ²]	10,0	10,0	9,5	9,0	4,0
Temperature range III: 80°C / 120°C	TRk,cr,50	[N/mm ²]	5,0	6,0	5,0	5,0	2,0
		C30/37		1,	,04		1,00
Increasing factor	Ψο	C40/50		1,	,07		1,00
		C50/60		1,	,09		1,00
		24°C/40°C		18.52-2 + 12.00-0	0,72		•
Sustained load factor	Ψ^{o}_{sus}	50°C/80°C			0,72		
		80°C / 120°C			0,61		
Combined pull-out and concrete cone failur	e in cracked co	ncrete C20/25 for	a working	g life of 10	0 years		
Temperature range I: 24°C / 40°C	TRk,cr, 100	[N/mm ²]	7,0	9,5	9,0	8,5	4,0
Temperature range II: 50°C / 80°C	TRk,cr, 100	[N/mm ²]	7,0	9,5	9,0	8,5	4,0
		C30/37		1,	1,00		
Increasing factor	Ψα	C40/50	1,07			1,00	
		C50/60	1,09			1,00	

D VED II	DVEDUC	and D KED II W
K-NEK-II	. K-NEK-11-3	and R-KER-II-W

Characteristic resistance under tension loads for rod with inner thread in cracked concrete

Annex C6

Table C4: (continuation)

Cone failure in cracked concrete		(C) (V) (S) (S)	Market Control Wildow	TO THE RESERVE THE PARTY OF THE				
Factor for cracked concrete		K _{cr,N}	[-]	7,7				
Edge distance		C _{cr,N}	[mm]	1,5 ⋅ h _{ef}				
Spacing		S _{cr,N}	[mm]	3,0 ⋅ h _{ef}				
Splitting failure								
	C _{cr,sp} for	h _{min}		2,0 ⋅ h _{ef}	1,5 ⋅ h _{ef}			
Edge distance	c _{cr,sp} h _{min} < h ²⁾ (c _{cr,sp} from interpola	< 2 · h _{ef} n linear ation)	[mm]	$2 \times h_{\text{lef}}$ h_{trus} $C_{G N_0} C_{C f Sp}$				
	c _{cr,sp} for h ²	$c_{cr,sp}$ for $h^{2} \ge 2 \cdot h_{ef}$		C _{cr,N}				
Spacing	S _{cr,s}	.p	[mm]	2,0 · c _{cr,sp}				
Installation safety factor for combin	ed pull-out, con	crete cone a	nd splitting failure	е				
Installation safety factors for use	standard cleaning			1,0				
category I1	special cleaning		[-]	1,0				
Installation safety factors for use	standard cleaning	Yinst	ניו	1,0				
category I2	special cleaning			1,0				

¹⁾ In the absence of other national regulation.

R-KER-II	, R-KER-II-S	and R-KER-II-W
----------	--------------	----------------

Characteristic resistance under tension loads for rod with inner thread in cracked concrete

Annex C6

²⁾ h – concrete member thickness.

Size					Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32	
Steel failure with reb	ar												
Characteristic resista	ance		$N_{\text{Rk,s}}$	[kN]				$A_s^{3)}$	· f _{uk} ⁴⁾				
Partial safety factor	1)		γ̃Ms	[-]				1,	40				
Combined pull-out	and cond	rete cone failu	re in uncr	acked concrete	C20/25	for a w	orking l	ife of 50	years				
Temperature range	: 24°C / 4	0°C	Rk,ucr,50	[N/mm ²]	13,0	14,0	14,0	13,0	13,0	10,0	9,0	7,5	
Temperature range	I: 50°C / 8	30°C	Rk,ucr,50	[N/mm ²]	13,0	14,0	14,0	13,0	13,0	10,0	9,0	7,5	
Temperature range l	II: 80°C /	120°C	Rk,ucr,50	[N/mm ²]	7,0 7,0 7,0 7,0 7,0 5,5 5,0 4,0								
				C30/37	1,04								
Increasing factor			Ψc	C40/50	1,07								
			200000000000000000000000000000000000000	C50/60				1,	09				
				24°C/40°C				0,	72				
Sustained load facto	r		Ψ^{0}_{0} sucs	50°C/80°C	0,72								
				80°C / 120°C	0,61								
Combined pull-out	and cond	rete cone failu	re in uncr	acked concrete	C20/25	for a w	orking l	ife of 10	0 years				
Temperature range	: 24°C / 4	0°C 1	Rk,ucr,100	[N/mm ²]	12,0	14,0	14,0	12,0	12,0	10,0	8,5	7,5	
Temperature range II: 50°C / 80°C τ _{Rk,ucr,100}			[N/mm ²]	12,0	14,0	14,0	12,0	12,0	10,0	8,5	7,5		
			C30/37				1,	04		22-20-2			
Increasing factor			ψ_{c}	C40/50	1,07								
				C50/60	1,09								
Concrete cone fail	ure in und	cracked concre	te					Toron .				339	
Factor for non-crack	ed concre	ete	k _{ucr,N}	[-]				11	1,0				
Edge distance			C _{ucr,N}	[mm]				1,5	· h _{ef}				
Spacing			S _{ucr,N}	[mm]				3,0	· h _{ef}				
Splitting failure											- 64		
		C _{cr,sp} for	1 _{min}				2,0	· h _{ef}			1,5	· h _{ef}	
		C _{cr,sp} f	or										
Edge distance		$h_{min} < h^{(2)} <$		[mm]			2	x h _{ef}					
		(c _{cr,sp} from interpolar						h _{min}		_			
		(0 (. *)	,		C _{CI,Np} C _{CI,pp}								
$c_{cr,sp}$ for $h^{2} \ge 2 \cdot h_{ef}$				[1	C _{cr,N} 2,0 · C _{cr,sp}								
Spacing Installation safety f	actor for	S _{cr,sp}	out cond	[mm]	colitting	failuro	No. 1845	2,0	C _{cr,sp}		4 70.00		
Installation safety			out, cont	nete cone and	spiriting	ianuie	A 102 111	1	0	CALC. IV		V-1-11	
factors for use		standard cleaning			1,0							4.0	
category I1		cial cleaning	γinst	[-]	1,2							1,2	
factors for use	stallation safety standard clea		_		1,2								
category I2 special cleaning					1,2							1,2	

 $^{^{1)}}$ In the absence of other national regulation. $^{2)}$ h – concrete member thickness.

Characteristic resistance under tension loads for rebar in non-cracked concrete

Annex C7

³⁾ Stressed cross section of the steel.

⁴⁾ Acc. to EN 1992-1-1.

Size					Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Steel failure with rebar				-								
Characteristic resistan	се		$N_{Rk,s}$	[kN]				A _s ³⁾	· f _{uk} ⁴⁾			
Partial safety factor 1)			γMs	[-]	1,40							
Combined pull-out a	nd cond	rete cone failu	re in crac	cked concrete C	20/25 fc	or a wor	king life	of 50 ye	ars			7
Temperature range I:	24°C / 4	0°C	τ _{Rk,cr,50}	[N/mm ²]	8	9	10	10	8,5	7,5	6	3,5
Temperature range II:	50°C / 8	30°C	τ _{Rk,cr,50}	[N/mm ²]	8 9 10 10 8,5 7,5 6							3,5
Temperature range III	: 80°C /	120°C	τ _{Rk,cr,50}	[N/mm ²]	4,5	5	5	5	4,5	4	3	2
- 02				C30/37				1,	04			
Increasing factor			Ψc	C40/50	1,07							
				C50/60	1,09							
				24°C/40°C				0,	72			
Sustained load factor			Ψ^{0}_{sus}	50°C/80°C	0,72							
Sustained load factor				80°C / 120°C				0,	61			
Combined pull-out a	nd cond	rete cone failu	ire in non	-cracked concr	ete C20	/25 for a	workin	g life of	100 year	rs		
Temperature range I:	24°C / 4	0°C	TRk,cr,100	[N/mm ²]	7,5	9	10	10	8,5	7,5	6	3,5
Temperature range II: 50°C / 80°C τ		TRk,cr,100	[N/mm ²]	7,5	9	10	10	8,5	7,5	6	3,5	
			C30/37	1,04								
Increasing factor			Ψc	C40/50 1,07								
			***	C50/60	1,09							
Concrete cone failur	e in cra	cked concrete										
Factor for racked con-	crete		k _{cr,N}	[-]					,7			
Edge distance			C _{cr,N}	[mm]	1,5 · h _{ef}							
Spacing			S _{cr,N}	[mm]				3,0	· h _{ef}	418/1-10/1-10		
Splitting failure												20 C
		c _{cr,sp} for	h _{min}		2,0 · h _{ef} 1,5						· h _{ef}	
Edge distance		c _{cr,sp} 1 h _{min} < h ²⁾ <	2 h _{ef}	[mm]	2×1,							
		(c _{cr,sp} from interpola	tion)					h _{mo}	C _{cr Np} C _{cr Sp}	-		
$c_{cr,sp}$ for $h^{(2)} \ge 2 \cdot h_{ef}$									cr,N			
Spacing		S _{cr,sp}		[mm]				2,0	C _{cr,sp}	1450 C 1500 C	LV	Marine Co.
Installation safety fa			i-out, con	crete cone and	splitting	g failure			0			
factors for use category 11 ¹⁾		dard cleaning			1,2				,0 ,0			1,2
Installation safety		dard cleaning	γins	t [-]					,2			-1-
factors for use category I2 ¹⁾		ecial cleaning			1,2				,0			1,2
category 12"	Spe	Join Grouning			.,				· 50			. 1-

¹⁾ In the absence of other national regulation.

R-KER-II, R-KER-II-S and R-KER-II-W Annex C8 of European Technical Assessment ETA-21/0242

²⁾ h – concrete member thickness.

³⁾ Stressed cross section of the steel.

⁴⁾ Acc. to EN 1992-1-1.

Size			M8	M10	M12	M16	M20	M24	M30
Steel failure with threaded rod grade 5.8	8			ALL STATE OF THE S		4- 304			
Characteristic resistance	$V_{Rk,s}$	[kN]	9	14	21	39	61	88	140
Factor considering ductility	k ₇	[-]			•	0,8			
Partial safety factor 1)	γ _{Ms}	[-]				1,25			
Steel failure with threaded rod grade 8.3			The same of	Control of the					50.78
Characteristic resistance	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	224
Factor considering ductility	k ₇	[-]				0,8			
Partial safety factor 1)	γMs	[-]				1,25			
Steel failure with threaded rod grade 10									
Characteristic resistance	$V_{Rk,s}$	[kN]	18	29	42	78	122	176	280
Factor considering ductility	k ₇	[-]				0,8			
Partial safety factor 1)	γMs	[-]				1,50			
Steel failure with threaded rod grade 12								ligranie, c	
Characteristic resistance	V _{Rk,s}	[kN]	22	35	51	94	147	212	336
Factor considering ductility	k ₇	[-]				0,8			
Partial safety factor 1)	γMs	[-]				1,50			
Steel failure with stainless steel thread			2512-7136						
Characteristic resistance	$V_{Rk,s}$	[kN]	13	20	29	55	86	124	196
Factor considering ductility	k ₇	[-]				0,8			
Partial safety factor 1)	γMs	[-]				1,56			
Steel failure with stainless steel thread				AND THE PARTY		9 3 3 4 5 6 6	4356	and the same	
Characteristic resistance	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	224
Factor considering ductility	k ₇	[-]				0,8			
Partial safety factor 1)	γMs	[-]				1,33			
Steel failure with high corrosion stainle						Constant			
Characteristic resistance	$V_{Rk,s}$	[kN]	13	20	29	55	86	124	196
Factor considering ductility	k ₇	[-]		-	-	0,8			
Partial safety factor 1)	γMs	[-]				1,56			
Steel failure with ultra-high strength ste			100	1727		To the second			
Characteristic resistance	$V_{Rk,s}$	[kN]	25	40	59	109	171	247	392
Factor considering ductility	k ₇					0.8	1		
Partial safety factor 1)	γMs	[-]				1,50			
Steel failure with ultra-high strength ste	el threaded rod grade		13 13 14			Sac Starker	13. TO		COUNTY
Characteristic resistance	V _{Rk,s}	[kN]	27	43	63	117	183	264	420
Factor considering ductility	k ₇	[-]		-		0,8			
Partial safety factor 1)	γMs	[-]				1,50			
Steel failure with ultra-high strength ste									
Characteristic resistance	V _{Rk,s}	[kN]	29	46	67	125	196	282	448
Factor considering ductility	k ₇	[-]		1		0,8			
Partial safety factor 1)	Ϋ́Ms	[-]				1,50			

¹⁾ In the absence of other national regulation.

Characteristic resistance under shear loads for threaded rod in cracked and non-cracked concrete

Annex C9

Table C8: Characteristic resistance under shear loads for threaded rod – steel failure with lever arm

Size			M8	M10	M12	M16	M20	M24	M30
Steel failure with threaded rod grade 5.			N. N. S.					SCATT ALE	
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	561	1124
Partial safety factor 1)	γMs	[-]				1,25			
Steel failure with threaded rod grade 8.								A STATE OF	Total of
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	1799
Partial safety factor 1)	Умs	[-]				1,25			
Steel failure with threaded rod grade 10	0.9	Marina Ven		E A COL	Section .				tind Trott
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	37	75	131	333	649	1123	2249
Partial safety factor 1)	γMs	[-]				1,50			
Steel failure with threaded rod grade 12	2.9							rangan ang	
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	45	90	157	400	779	1347	2698
Partial safety factor 1)	γMs	[-]	1,50						
Steel failure with stainless steel thread	ed rod A4-70						544		5.00
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786	1574
Partial safety factor 1)	Ϋ́Ms	[-]			1,56				
Steel failure with stainless steel thread						80.33			E.S. I
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	1799
Partial safety factor 1)	γMs	[-]				1,33			
Steel failure with high corrosion resista	ant steel grade 70								
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786	1574
Partial safety factor 1)	γMs	[-]				1,56			
Steel failure with ultra-high strength st	eel threaded rod grade	14.8					er see hear		
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	52	104	183	466	908	1571	3148
Partial safety factor 1)	Ϋ́Ms	[-]			•	1,50			
Steel failure with ultra-high strength st	eel threaded rod grade	15.8							
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	56	112	196	499	973	1683	3373
Partial safety factor 1)	Ϋ́Ms	[-]		1, 1-7, 1-1, 1-1, 1-1, 1-1, 1-1, 1-1, 1-		1,50			
Steel failure with ultra-high strength st		16.8					THE PROPERTY		7
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	59	119	209	532	1038	1796	3598
Partial safety factor 1)	Ϋ́Ms	[-]				1,50			

¹⁾ In the absence of other national regulation.

Table C9: Characteristic resistance under shear loads – pry out and concrete edge failure for threaded rod

Size			M8	M10	M12	M16	M20	M24	M30
Pry out failure						SIPSER	WITE.		
Pry out factor k ₈ [-]						2			
Concrete edge failure			N. STATE	P. P. Server					
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	30
Effective length of anchor under shear loading	l _f	[mm]	I _f = h _{of} and ≤ 12 d _{nom}						I _f = h _{ef} and ≤ max (8·d _{nom} ; 300 mm)

R-KER-II, R-KER-II-S and R-KER-II-W	Annex C10
Characteristic resistance under shear loads for threaded rod in cracked and non-cracked concrete	of European Technical Assessment ETA-21/0242

Table C10: Characteristic resistance under shear loads for rod with inner thread – steel failure without lever arm

Size	ALCOHOL STATE		M6 /Ø10	M8/ Ø12	M10/ Ø16	M12/ Ø16	M16/ Ø24
Steel failure with rod with inner thread	grade 5.8						
Characteristic resistance	$V_{Rk,s}$	[kN]	5,0	9,2	14,5	21,1	39,3
Factor considering ductility	k ₇	[-]			0,8		
Partial safety factor 1)	γMs	[-]			1,25		
Steel failure with rod with inner thread	grade 8.8						
Characteristic resistance	$V_{Rk,s}$	[kN]	8,0	14,6	23,2	33,7	62,8
Factor considering ductility	k ₇	[-]	0,8				
Partial safety factor 1)	γMs	[-]			1,25		
Steel failure with stainless steel for rod	with inner thread A4-7	0					
Characteristic resistance	$V_{Rk,s}$	[kN]	7,0	12,8	20,3	29,5	55,0
Factor considering ductility	k ₇	[-]			0,8		•
Partial safety factor 1)	γMs	[-]			1,56		
Steel failure with stainless steel for rod	with inner thread A4-8	0				no francisco	\$3.5E
Characteristic resistance	V _{Rk,s}	[kN]	8,0	14,6	23,2	33,7	62,8
Factor considering ductility	k ₇	[-]			0,8		•
Partial safety factor 1)	γMs	[-]			1,33		
Steel failure with high corrosion stainle	ess steel grade 70	Salar Late					
Characteristic resistance	V _{Rk,s}	[kN]	7,0	12,8	20,3	29,5	55,0
Factor considering ductility	k ₇	[-]		•	0,8		
Partial safety factor 1)	γмѕ	[-]			1,56		

¹⁾ In the absence of other national regulation.

Table C11: Characteristic resistance under shear loads for rod with inner thread - steel failure with lever arm

Size	A delice 22		M6 /Ø10	M8/ Ø12	M10/ Ø16	M12/ Ø16	M16/ Ø24
Steel failure with rod with inner thread	grade 5.8						
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	7,6	18,7	37,4	65,5	166,5
Partial safety factor 1)	γMs	[-]			1,25		
Steel failure with rod with inner thread	grade 8.8						
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	12,2	30,0	59,8	104,8	266,4
Partial safety factor 1)	γMs	[-]			1,25	•	
Steel failure with stainless steel for ro	d with inner thread A4-7	0					
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	10,7	26,2	52,3	91,7	233,1
Partial safety factor 1)	γMs	[-]			1,56		•
Steel failure with stainless steel for ro	d with inner thread A4-8	30	Ar Z	SKILW TELL			
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	12,2	30,0	59,8	104,8	266,4
Partial safety factor 1)	γMs	[-]			1,33		
Steel failure with high corrosion resis	tant steel grade 70				William Burger		
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	10,7	26,2	52,3	91,7	233,1
Partial safety factor 1)	γMs	[-]			1,56		

¹⁾ In the absence of other national regulation.

Table C12: Characteristic resistance under shear loads – pry out and concrete edge failure for rod with inner thread

ize			M6 /Ø10	M8/ Ø12	M10/ Ø16	M12/ Ø16	M16/ Ø24	
Pry out failure					A commence of the second			
Factor	k ₈	[-]	2					
Concrete edge failure								
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	16	24	
Effective length of anchor under shear loading	lf	[mm]	I _f = h _{ef} and ≤ 12 d _{nom}					

R-KER-II, R-KER-II-S and R-KER-II-W

Characteristic resistance under shear loads for threaded rod in cracked and non-cracked concrete

Annex C11

Table C13: Characteristic resistance under shear loads for rebar – steel failure without lever arm

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Steel failure with rebar										
Characteristic resistance	$V_{Rk,s}$	[kN]	$0.5 \cdot A_s^{2} \cdot f_{uk}^{3}$							
Factor considering ductility	k ₇	[-]				0	,8			
Partial safety factor 1)	γмѕ	[-]				1	,5			

¹⁾ In the absence of other national regulation.

Table C14: Characteristic resistance under shear loads for rebar – steel failure with lever arm

Size	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32		
Steel failure with rebar										2,635
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]				1,2 · W	el 2) · f _{uk} 3)			
Partial safety factor 1)	γмѕ	[-]				1	,5			

Table C15: Characteristic resistance under shear loads - pry out and concrete edge failure for rebar

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Pry out failure										
Factor	k ₈	[-]					2			
Concrete edge failure										
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	32
Effective length of anchor under shear loading	lf	[mm]			$l_f = h_e$	of and ≤ 1.	2 d _{nom}			l _f = h _{ef} and ≤ max (8·d _{nom} ; 300 mm)

R-KER-II, R-KER-II-S and R-KER-II-W Annex C12 of European **Technical Assessment** Characteristic resistance under shear loads ETA-21/0242 in cracked and non-cracked concrete

²⁾ Stressed cross section of the steel element.

³⁾ Acc. to EN 1992-1-1.

¹⁾ In the absence of other national regulation.
²⁾ Elastic section modulus calculated from the stressed cross section of steel element.

³⁾ Acc. to EN 1992-1-1.

Table C16: Displacement under tension loads - threaded rod

Size		M8	M10	M12	M16	M20	M24	M30	
Characteristic displacement in une	cracked concrete C20/25 t	o C50/60 un	der tens	sion load	ls				
Di1	δ _{N0}	[mm]	0,3	0,4	0,4	0,5	0,5	0,6	0,7
Displacement 1)	δ _{N∞}	[mm]	0,6	0,6	0,6	0,6	0,6	0,6	0,6
Characteristic displacement in cra	cked concrete C20/25 to	C50/60 unde	r tensio	n loads	ALC:				
Displacement 1)	δηο	[mm]	0,3	0,4	0,4	0,5	0,5	0,6	0,6
splacement 1)	$\delta_{N\infty}$	[mm]	2	2	2	2	2	2	2

These values are suitable for each temperature range and categories specified in Annex B1. Calculation of the displacement: $\delta_{N0} = \delta_{N0}$ -factor · N; $\delta_{N} = \delta_{N\infty}$ -factor · N; (N – applied tension load)

Table C17: Displacement under shear loads - threaded rod

Size				M10	M12	M16	M20	M24	M30
Characteristic displacement in cracked and un	ncracked conc	rete C20/25	to C50/	60 under	shear le	oads			
Disalessment 1)	δ_{V0}	[mm]	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Displacement 19	$\delta_{V^{\infty}}$	[mm]	3,7	3,7	3,7	3,7	3,7	3,7	3,7

These values are suitable for each temperature range and categories specified in Annex B1. Calculation of the displacement: $\delta_{V0} = \delta_{V0}$ -factor · V; $\delta_{V} = \delta_{V\omega}$ -factor · V; (V – applied shear load)

R-KER-II, R-KER-II-S and R-KER-II-W

Displacement under service loads: tension and shear loads - threaded rod

Annex C13

Table C18: Displacement under tension loads - rod with inner thread

Size			M6/ Ø10	M8/ Ø12	M10/Ø 16	M12/Ø 16	M16/Ø 24
Characteristic displaceme	nt in uncracked cor	crete C20/25	to C50/60 un	der tension lo	ads		
Disalasas 1)	δ _{N0}	[mm]	0,2	0,3	0,3	0,4	0,4
Displacement 1)	δ _{N∞}	[mm]	0,6	0,6	0,6	0,6	0,6
Characteristic displaceme	nt in cracked concr	ete C20/25 to	C50/60 unde	r tension load	s		
Disabs 1)	δ _{NO}	[mm]	0,3	0,4	0,4	0,5	0,3
Displacement 1)	$\delta_{N\infty}$	[mm]	2	2	2	2	2

These values are suitable for each temperature range and categories specified in Annex B1. Calculation of the displacement: $\delta_{N0} = \delta_{N0^-factor} \cdot N$; $\delta_{N} = \delta_{N\infty^-factor} \cdot N$; (N – applied tension load)

Table C19: Displacement under shear loads - rod with inner thread

Size	M6/ Ø10	M8/ Ø12	M10/Ø16	M12/ Ø16	M16/ Ø24		
Characteristic displaceme	nt in cracked and u	ncracked co	ncrete C20/25	to C50/60 und	ler shear loads	3	
DiI	δνο	[mm]	2,5	2,5	2,5	2,5	2,5
Displacement 1)	$\delta_{V\infty}$	[mm]	3,7	3,7	3,7	3,7	3,7

These values are suitable for each temperature range and categories specified in Annex B1. Calculation of the displacement: $\delta_{V0} = \delta_{V0}$ -factor · V; $\delta_{V} = \delta_{V\omega}$ -factor · V; (V – applied shear load)

R-KER-II, R-KER-II-S and R-KER-II-W

Displacement under service loads: tension and shear loads - rod with inner thread

Annex C14

Table C20: Displacement under tension loads - rebar

Size				Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Characteristic displacement in uno	cracked concrete C	20/25 to C	50/60 ur	der tens	sion load	ds				
Disalessant 1)	δ _{N0}	[mm]	0,3	0,3	0,4	0,4	0,5	0,6	0,6	0,8
Displacement 1)	δ _{N∞}	[mm]	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
Characteristic displacement in cra	cked concrete C20	25 to C50/	60 unde	r tensio	n loads			727		
Di1	δ _{N0}	[mm]	0,3	0,3	0,3	0,4	0,5	0,6	0,6	0,7
splacement 1)	δ _{N∞}	[mm]	2	2	2	2	2	2	2	2

These values are suitable for each temperature range and categories specified in Annex B1. Calculation of the displacement: $\delta_{N0} = \delta_{N0}$ -factor · N; $\delta_{N} = \delta_{N\infty}$ -factor · N; (N – applied tension load)

Table C21: Displacement under shear loads - rebar

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Characteristic displacement in	cracked and uncracke	d concrete	C20/25	to C50/	60 unde	r shear I	oads			
Displacement 1)	δνο	[mm]	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Displacement	δν∞	[mm]	3,7	3,7	3,7	3,7	3,7	3,7	3,7	3,7

These values are suitable for each temperature range and categories specified in Annex B1.
Calculation of the displacement: δ_{V0} = δ_{V0}-factor · V; δ_V = δ_{V∞}-factor · V; (V – applied shear load)

R-KER-II, R-KER-II-S and R-KER-II-W

Displacement under service loads: tension and shear loads - rebar

Annex C15

Table C22: Characteristic resistance under tension load for threaded rod for seismic performance category C1

Size			M8	M10	M12	M16	M20	M24	M30
Steel failure									Alice III
Steel failure with threaded rod grade 5.8									
Characteristic resistance	N _{Rk,s,seis}	[kN]	18	29	42	78	122	176	280
Partial safety factor 1)	γMs, seis	[-]				1,50			
Steel failure with threaded rod grade 8.8							,	,	
Characteristic resistance	N _{Rk,s,seis}	[kN]	29	46	67	125	196	282	448
Partial safety factor 1)	γMs, seis	[-]				1,50			
Steel failure with stainless steel threaded	rod A4-70						,		
Characteristic resistance	N _{Rk,s, seis}	[kN]	25	40	59	109	171	247	392
Partial safety factor 1)	γMs, seis	[-]				1,87			
Steel failure with stainless steel threaded	l rod A4-80							T	
Characteristic resistance	N _{Rk,s, seis}	[kN]	29	46	67	125	196	282	448
Partial safety factor 1)	γMs, seis	[-]				1,60			
Steel failure with high corrosion resistant	steel grade 70					,			
Characteristic resistance	N _{Rk,s, seis}	[kN]	25	40	59	109	171	247	392
Partial safety factor 1)	γMs, seis	[-]				1,87			
Combined pull-out and concrete cone	failure in uncracl	ked concrete	C20/25 fc	or a work	ing life o	f 50 year	s		
Characteristic bond resistance									
Temperature range I: 24°C / 40°C	TRk,ucr,seis,50	[N/mm ²]	8,0	10,0	10,0	9,5	7,5	7,0	4,0
Temperature range II: 50°C / 80°C	T _{Rk,ucr,seis,50}	[N/mm ²]	8,0	10,0	10,0	9,5	7,5	7,0	4,0
Temperature range II: 80°C / 120°C	T _{Rk,ucr,seis,50}	[N/mm ²]	4,5	5,0	6,0	5,0	4,0	4,0	2,0
Combined pull-out and concrete cone	failure in uncracl	ked concrete	C20/25 fc	or a work	ing life o	f 100 yea	ırs		
Characteristic bond resistance									
Temperature range I: 24°C / 40°C	τ _{Rk,ucr,seis,100}	[N/mm ²]	8,0	9,0	10,0	9,5	7,5	7,0	4,0
Temperature range II: 50°C / 80°C	T _{Rk,ucr,seis,100}	[N/mm ²]	8,0	9,0	10,0	9,5	7,5	7,0	4,0

Table C23: Characteristic resistance under tension load for rebar for seismic performance category C1

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Steel failure with rebar										
Characteristic resistance	N _{Rk,s,seis}	[kN]				A _s ²⁾	· f _{uk} ³⁾			
Partial safety factor 1)	γ̃Ms, seis	[-]	1,40							
Combined pull-out and concrete cone	failure in uncrac	ked concrete	C20/25	for a w	orking I	ife of 50	years			
Characteristic bond resistance										
Temperature range I: 24°C / 40°C	TRk,ucr,seis,50	[N/mm ²]	7,0	8,5	10,0	10,0	8,5	7,5	6,0	3,5
Temperature range II: 50°C / 80°C	TRk,ucr,seis,50	[N/mm ²]	7,0	8,5	10,0	10,0	8,5	7,5	6,0	3,5
Temperature range II: 80°C / 120°C	TRk,ucr,seis,50	[N/mm ²]	4,0	4,5	5,0	5,0	4,5	4,0	3,0	1,5
Combined pull-out and concrete cone	failure in uncrac	ked concrete	C20/2	for a w	orking I	ife of 10	0 years			
Characteristic bond resistance										
Temperature range I: 24°C / 40°C	τ _{Rk,ucr,seis,100}	[N/mm ²]	6,0	8,5	10,0	10,0	8,5	7,5	6,0	3,5
Temperature range II: 50°C / 80°C	τ _{Rk,ucr,seis,100}	[N/mm ²]	6,0	8,5	10,0	10,0	8,5	7,5	6,0	3,5

¹⁾ In the absence of other national regulation.

Characteristic resistance under tension loads for threaded and rebar for seismic action category C1

Annex C16

²⁾ Stressed cross section of the steel element.

³⁾ Acc. to EN 1992-1-1.

Table C24: Characteristic resistance under shear loads for threaded rod for seismic performance category C1 - steel failure without lever arm

Size			M8	M10	M12	M16	M20	M24	M30
Steel failure with threaded rod grade	5.8						a feet and a		
Characteristic resistance	V _{Rk,s,seis}	[kN]	6,3	10,1	14,7	27,3	42,7	61,6	98,0
Partial safety factor 1)	γMs, seis	[-]				1,25			
Steel failure with threaded rod grade	3.8								
Characteristic resistance	V _{Rk,s, seis}	[kN]	10,2	16,1	23,5	44,1	68,6	98,7	156,8
Partial safety factor 1)	YMs. seis	[-]				1,25			
Steel failure with stainless steel threa	ded rod A4-70	SINCE STATE			CASC III				
Characteristic resistance	V _{Rk,seis}	[kN]	9,1	14,4	20,7	38,5	59,9	86,5	137,4
Partial safety factor 1)	γMs, seis	[-]				1,56			
Steel failure with stainless steel threa	ded rod A4-80	A SHARE THE	A STATE OF	and Aum A	Silver or La				
Characteristic resistance	V _{Rk,seis}	[kN]	10,2	16,1	23,5	44,1	68.6	98.7	157.2
Partial safety factor 1)	YMs. seis	[-]				1,33			
Steel failure with high corrosion stain			W. W. D. J.	Acres 1	2.2			127.114	Take 1
Characteristic resistance	V _{Rk,seis}	[kN]	9,1	14,4	20,7	38.5	59.9	86.5	137,4
Partial safety factor 1)	γMs, seis	[-]				1,56			1

¹⁾ In the absence of other national regulation.

Table C25: Characteristic resistance under shear loads for rebar for seismic performance category C1 – steel failure without lever arm

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Steel failure with rebar									5 5 75	
Characteristic resistance	V _{Rk,s,seis}	[kN]	$0.35 \cdot A_s^{2)} \cdot f_{uk}^{3)}$							
Partial safety factor 1)	γMs, seis	[-]				1	,5			

¹⁾ In the absence of other national regulation.

R-KER-II, R-KER-II-S and R-KER-II-W

Characteristic resistance under shear loads for threaded and rebar for seismic action category C1

Annex C17

²⁾ Stressed cross section of the steel element.

³⁾ Acc. to EN 1992-1-1.

Table C26: Displacement under tension loads - threaded rod for seismic performance category C1

Size			M8	M10	M12	M16	M20	M24	M30
Displacement	δ _{N,seis}	[mm]	3,0	3,1	3,5	4,0	5,0	6,0	6,6

Table C27: Displacement under shear loads - threaded rod for seismic performance category C1

Size			M8	M10	M12	M16	M20	M24	M30
Displacement	δ _{V,seis}	[mm]	3,5	4,0	4,6	5,0	5,8	6,5	7,0

Table C28: Displacement under tension loads - rebar for seismic performance category C1

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Displacement	δ _{N,seis}	[mm]	3,0	3,1	3,5	4,0	4,0	5,0	6,0	6,4

Table C29: Displacement under shear loads - rebar for seismic performance category C1

Size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32	
Displacement	$\delta_{V,seis}$	[mm]	3,5	4,0	4,6	5,0	5,0	5,8	6,5	7,2

R-KER-II, R-KER-II-S and R-KER-II-W

Displacement under service loads: tension and shear loads for seismic action category C1

Annex C18